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Abstract

A promising approach for improving both the interpretability and usefulness of
latent representations for downstream tasks is disentanglement. Though recent
work in variational frameworks has found success implicitly encouraging disentan-
glement for learning better representations, such methods do not take advantage
of the readily available priors in most data. We propose three methods for ex-
plicit disentanglement and evaluate their ability to learn better representations
with different datasets. Additionally, we investigate how we can leverage explicit
disentanglement for learning representations under biased data.

1 Introduction

Recently, generative models have shown great promise for building representations in images.
However, the internal representations these ’black-box’ models learn often leave much to be desired
in terms of interpretability. A promising approach for improving both the interpretability and
usefulness of latent representations for downstream tasks is disentanglement. As stated by [15], we
define disentanglement as the representation when altering one latent dimension mainly affects one
factor of variation while leaving other factors relatively unaffected. We further separate explicit
disentanglement from implicit. Explicit disentanglement allows for the user to know a priori what
factor each latent code corresponds to, while the implicit representation can only reveal the factor
after learning the latent space. To motivate the need for disentanglement, note that humans are
naturally skilled at finding causal relationships between variables and outcomes, and are adept at
generalizing these variable-outcome relationships to other situations. Similarly, building models
that can explicitly disentangle latents would provide valuable insights into causal analysis and
generalization to downstream tasks, among others.

Though recent work in variational learning has found success implicitly encouraging disentanglement
[5, 10], such methods do not take advantage of the readily available priors in most data. Additionally,
all methods of implicit disentanglement are impractical, in that they require the user to find the
correspondence between different components of the latent to factors in the learned representation.
While these brute force techniques have functioned in the past, they are likely to fail for larger
representations and provide no guarantees of learning the desired factors of variation.

On the other hand, self-supervised methods such as SimCLR [4] show that strong priors can be learned
via relationships induced by data augmentation. For example, image cropping, skewing, and rotation
allow for sufficient representation learning, which can bridge the gap to fully supervised techniques.
Though image manipulation naturally provides information for learning spatial factors, pseudo-labels
for other factors of variation can be found in usually unused meta-data (ie. the timestamp of a photo)
or through labels provided by classifiers.



For the above reasons, we study learning explicit representations in the self-supervised or semi-
supervised setting where information on desired factors in data is readily generated or known. Using
available information on these factors, we integrate disentanglement directly into the learning objec-
tive. We propse three methods for explicit disentanglement and evaluate their ability to learn better
better representations. Additionally, we investigate how we can leverage explicit disentanglement for
learning representations under biased data.

2 Related Works

In the field of unsupervised learning, there have been several early works investigating implicit
disentanglement of latent representations. Early works [14] sought to capture high-level latent
representations without understanding exactly what the latent codes corresponded to. More recently,
building off of the Variational Autoencoder (VAE) generative model [11], β−VAE [7] alters the
objective by placing a higher weight (β > 1) on the KL divergence between the posterior and the
prior, which encourages the independence of latent dimensions at the expense of reconstruction
quality. To handle this trade-off, [10] proposed FactorVAE, an alteration of β−VAE that adds a term
to the VAE objective which encourages minimizing KL[q(z)||p(z)]. This pushes for a factorial prior
without losing information about x in z.

InfoGAN [5] takes the Generative Adversarial Network (GAN) generative model [6] one step further
by incorporating the mutual information between a specific subset of latents s and the original
observation x into the minimax objective. This allows for interpolations across the one latent
dimension si to correspond to a certain feature found in the dataset. However, in addition to GANs
notorious difficulty to train, both InfoGAN and FactorVAE only model implicit disentanglement of
the latent code. These models force the user to seek out the factor each latent corresponds to and can
be impractical in more complex datasets.

Other recent works have explored explicit spatial disentanglement. Spatial VAE [2] directly incor-
poates translation and rotation into the optimization loop, while Affine VAE [3] incorporates affine
transformations. However, both methods are limited to factors of variation that can be explicitly
derived from manipulating the input image and are thus less general. Work most similar to ours is
Cycle VAE [8]; however the authors do not enforce a distribution over specified factors (prohibiting
sampling) and only investigate class identity as a factor.

3 Background

3.1 Variational Autoencoders

The variational autoencoder (VAE) learns a mapping from a known low-dimensional distrubtion
z (usually N(0, I)) to a high-dimensional distribution x ∼ pdata by maximizing the likelihood
of pθ(x|z) under pdata. On its own, pθ(x|z) fails to learn due to the intractable size of the data
space X . Thus, VAEs use importance sampling with an approximate posterior qφ(z|x). To increase
expressivity of the model, both the encoder qφ(z|x) and decoder pθ(x|z) are parameterized by
neural networks. We then optimize the objective using the variational lower bound, leading to the
optimization problem: minθ,φ−Ez∼qφ(z|x)[log pθ(x|z)] +KL[qφ(z|x)||P (z)], which we can solve
by using the reparamaterization trick [11]. For more detail on VAEs, we refer the reader to [11].

3.2 Factored Latents

We now consider the explicitly factorized setting for disentanglement. Rather than modeling x
as a function of latents z, we postulate that each data point x is derived from both a latent z and
explicit factors y coming from some factor distribution. Note that this representation extends to
multiple an arbitrary number of factors y1, y2, ..., yk. Our decoder now models pθ(x|z, y) and our
encoder models qφ(z, y|x). Mathematically, we model the disentanglement of our representation by
assuming the independence of z and y conditioned on x, P (Z, Y |X) = P (Z|X)P (Y |X). We can
thus interpret each example from data distribution x ∼ pdata as being derived from features we care
about z and additional factors y. Our methods seek to maximize this independence during learning.
We assume that there exist strong enough priors in pdata to select reasonable disentanglement factors
y.
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(a) Similarity Loss (b) Forward Cycle Loss (c) Factor Prediction

Figure 1: Graphical depictions of our methods for explicit disentanglement.

4 Method

We now propose three techniques for encouraging the independence of z and y in the factored setting:
a similarity loss, a forward cycle loss, and a predictor loss. We then consider predictor loss in the
scenario of learning under a biased factor distribution y.

4.1 Similarity Loss

The independence condition in section 3.2 is equivalent to P (Z|X,Y ) = P (Z|X). We can interpret
this to mean that regardless of the factor variable y, our latent z should be be the same. We can rewrite
this as P (Z|X,Y = y) = P (Z|X,Y = y′), where y′ is considered to be a different variant of the
original factor y. To construct y′, we produce x′ from x by performing an augmentation on x that,
using prior knowledge on the data distribution, we know will not change the underlying representation.
We can enforce this independence between the latents and factors during training by encouraging
qφ(z|x) = qφ(z|x′) to hold. We do this by adding a KL regularization term KL[qφ(z|x)||qφ(z|x′)]
to the original VAE formulation. The new learning objective is given below, where λ is a hyper-
parameter determining the intensity of the regularization:

min
θ,φ
−Ez,y∼qφ [log pθ(x|z, y)] +KL[qφ(z, y|x)||P (z, y)] + λKL[qφ(z|x)||qφ(z|x′)] (1)

4.2 Forward Cycle Loss

As in similarity loss we use augmented data points to promote the conditional independence of z
and y. Rather than directly constraining the latents, z, we constrain the reconstruction by using z′
and y to reconstruct x and use z and y′ to reconstruct x′. This way, the VAE learns that z and z′
must remain invariant for images x and x′ that differ in only factors y and y′ and not in other aspects.
Probabilisticaly, this can be viewed as promoting y to have no effect on z. The new objective is given
below:

min
θ,φ
− Ez′,y[log pθ(x|z′, y)] +KL[qφ(z, y|x)||P (z, y)] (2)

− Ez,y′ [log pθ(x′|z, y′)] +KL[qφ(z
′, y′|x′)||P (z′, y′)]

4.3 Factor Prediction

We now consider scenarios where it is impossible to generated paired data points x and x′, but it
is still possible to predict factors y from the data points. Maximizing the independence between Z
and Y can be viewed as the information theoretic objective min I(Z;Y |X) since conditioned on x,
z should provide no information about y. By minimizing the mutual information, the conditional
entropy H(Y |Z,X) approaches that of H(Y |X). Thus, we can view disentanglement in a predictive
framework where we want z to provide no useful information for predicting the factors y. We thus
learn a classifier g(z) that attempts to predict y from the latent representation z. By learning an
encoding qφ(z, y|x) such that g(z) is unable to provide useful predictions of y, we incentivize z to be
independent of y. In practice, we do this via mini-max optimization. First, we quantize continuous
factors into a fixed number of discrete labels. While the classifier g(z) attempts to predict the correct
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(a) β-VAE (β = 2) (b) Factor Prediction (c) Sim. Loss (λ = 0.6) (d) Forward Cycle Loss

Figure 2: Visual disentanglement results on the Rotated MNIST dataset. Originals on the left and
right of each figure are rotated by -50 and 50 degrees respectively. Interpolations are done only the
single most varied latent between images, corresponding to the rotation factor latent in our methods.

factor y, the encoder qφ(z, y|x) tries to maximize the entropy of the discrete distribution over factors
output by g(z).

min
θ,φ

max
w
−Ez,y∼qφ [log pθ(x|z, y)] +KL[qφ(z, y|x)||P (z, y)]− Ez∼qφ [LCE(gw(z), ygt)] (3)

In the above objective, LCE denotes categorical cross entropy loss and ygt are the ground truth labels
for y. One example where this approach is particularly useful is when attempting to learn complete
representations from biased samples. A dataset is biased in a factor y when the factor y is highly
correlated with other latent attributes in the data. However, for downstream tasks we may want our
learned representation to generalize to these unseen combinations of factors. The predictor g(z) can
then be interpreted as predicting the bias of data, and our optimization attempts to remove bias from
the latent component of the data z.

5 Experiment Results

5.1 Rotated MNIST

We take images from the MNIST dataset [12] and randomly rotate digits uniformly from negative 60
degrees to positive 60 degrees. We seek to disentangle the latent factor of rotation from the rest of
the representation. To generate paired data points for similarity loss and forward cycle loss, we pair
the same digit with different rotations together. For factor prediction, our self-supervised labels are
binary, indicating if the digit was rotated to the left or to the right. Across all methods, our encoder
and decoder both consist of two fully connected hidden layers of size 512 with tanh activations.
We use a total latent size of 11, with 10 dimensions for regular latents z and one dimension for the
rotation factor y. Visual results for each of our methods and regular VAE baseline can be found
in Figure 2, where we only vary a single latent variable while interpolating across a rotated digit.
We observe that β-VAE is completely unable to disentangle the rotation factor, and ends up barely
changing the digit. While the factor prediction improves upon this somewhat by general rotating the
contents of the image, it fails to completely disassociate class from rotation. The extra supervision
provided by explicit pairing helps similarity loss and forward cycle loss perform extremely well. In
addition, we quantitatively analyze our results by training linear classifiers on top of the latent vectors
z in order to predict the class of the digit. As seen in Table 1, a more disentangled and meaningful
latent representation yields a higher classification accuracy.

5.2 3D Chairs

The 3D chairs dataset [1] consists of renderings of 1393 unique chairs from varying angles and
perspectives. We employ the same network architecture and hyper-parameters from FactorVAE
[10], with a few minor changes. Namely, we use a 29 dimensional latent z and three additional
dimensions for the factor y designed to represent zoom, azimuth, and altitude in combination. Pairs
were generated by sampling two images of the same chair. Visual results against β−VAE can be
found in Figure 3, and additional results against Factor VAE are in the Appendix. We qualitatively
find that all the baselines are unable to disentangle chair identity from viewpoint effectively.
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Classifcation Acc on: Rotated MNIST Colored MNIST
Full Encoder 92% 43.28%

VAE 38% 48.68%
β−VAE (β = 2) 40% 57.20%
Predictor VAE 58% 59.29%

VAE + Similarity Loss 82% -
VAE + Forward Cycle Loss 84% -

Table 1: Classification Accuracy. For all methods, we freeze the encoder of a pretrained model and
train a linear layer/s to learn the correct class over 3 epochs. Full Encoder means the model was
trained from scratch (for 10 epochs) on just classification and allowed to adjust all parameters.

(a) β-VAE (β = 2) (b) Similarity Loss (λ = 0.5) (c) Forward Cycle Loss

Figure 3: Visual disentanglement results for the 3D chairs dataset. In each figure the image on the left
gives the original, while the image on the right gives a different view of the same chair. We interpolate
only over the three latent dimensions that vary the most, which correspond to the predefined factor
dimensions in b) and c).

5.3 Colored MNIST

We consider a colorized version of the MNIST dataset [9] that injects bias. Rather than all digits being
uniformly being colored, each digit in the training set is assigned a unique mean color. During training,
digits are colorized by taking their class’s mean color and adding a small Gaussian perturbation. As
a result, while a red six is in the training data, no blue six is the training dataset. We then seek to
disentangle the color factor y from the representation even though the dataset is extremely biased,
allowing us to learn a representation that performs well on the unbiased test set where colors are
assigned uniformly across digits.

We employ an encoder architecture with three convolutional layers of size 32 with 3x3 kernels and
stride 2 followed by a fully-connected layer of size 128. The decoder is the reverse with a Tanh at
the end. We chose a latent dimension of size 12 with a factor dimension of three, one for each color
channel. We derive predictive labels for color by quantizing each color channel into four values. We
find that factor prediction is better able to separate color information from class than regular VAE
as seen in Figure 4, though reconstruction quality is similar. Quantitatively, we boost classification
performance on the test set from 43.28% to 59.29% as seen in Table 1. However, we additionally find
that β-VAE performs well on this task and include these results in the Appendix.

5.4 CelebA

We use a modification of the similarity regularization in 4.1 for the CelebA dataset [13]. We want the
latents z to exactly represent the 40 different face attributes ("glasses", "bangs", "mustache" etc.) and
have the y factors correspond to the remaining noise in the faces. Instead of using augmentations, we
take two images from the dataset x, x′ and find the common attributes between them c, represented
as a 40 dimensional binary array. The KL regularization for the similarity loss is now only over the
subset of features that both images share, λKL[qφ(z� c|x′)||qφ(z′� c|x′)]. Our z is 40-dimensional,
y is 10-dimensional, and we use λ = 5. The encoder and decoder architectures are the same as what
we used in Colored MNIST.
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(a) Dataset Visualization (b) VAE (c) Factor Prediction

Figure 4: Graphical results on the colored MNIST dataset. Subfigure a) depicts how the dataset used
for training is color biased. In subfigures b) and c) the top portion give reconstructions on images
from the test set while the bottom section gives interpolations over images in the test set.

(a) Regular linear interpolations (b) Interpolations over only feature latents

Figure 5: Comparison of interpolations for CelebA using the modified similarity loss

We provide standard linear interpolations between images, as well as a specific interpolation that
sets the factors y = 0 and thus only interpolate over the features z. As seen in Figure 5, the linear
interpolations blend everything about the images together, whereas the feature interpolation keeps
the style of the leftmost image and tries to adopt some of the major features of the right image, like
hair or facial structure. We hope to extend this and construct a model to explicitly sample whichever
features are wanted.

6 Conclusions and Future Work

In this work, we proposed three methods–similarity loss, forward cycle loss, and factor prediction–
that explicitly disentangle the latent space. We also study factor prediction in the context of biased
data. Qualitatively, our three approaches led to smooth interpolations over a latent dimension/s that
corresponded to changing a pre-specified visual feature. Quantitatively, we showed our approaches
lead to better representation learning through increased performance on downstream classification
tasks.

The primary limitation of limitations of our approach(s) is the required specification of factors before
training via some form of weak supervision (pairing, augmentation, etc.). When incorporating the
latent meaning with downstream tasks like RL, it is unclear how to augment the data such that a
higher-order or possibly unknown concept can be learned.

In the future, we think it would be interesting to investigate the usage of explicit disentanglement on
more challenging datasets, such as ImageNet. We also wish to investigate how to combine implicit
and explicit techniques for disentanglement.
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7 Appendix

7.1 Code release

You can find all of the code used in our implementations at https://github.com/jhejna/ul_gen.

7.2 Additional Results

This section contains some additional results and larger versions of images already in the main body
of the paper.

(a) Beta VAE interpolations and reconstructions on the
colored MNIST test dataset. (b) FactorVAE interpolations on the 3d chairs dataset

after 150k steps. Model and parameters followed [10].

Figure 6: Additional Baselines

(a) Regular VAE (b) β-VAE (β = 2)

Figure 7: Larger versions of baselines for the Rotated MNIST dataset
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(a) Similarity Loss (b) Forward Cycle Loss

Figure 8: Larger versions explicit factorization models on the Rotated MNIST

(a) Regular VAE (b) β-VAE (β = 2)

Figure 9: Larger versions of baselines for the 3D Chairs dataset

(a) Similarity Loss (b) Forward Cycle Loss

Figure 10: Larger versions explicit factorization models on the 3D chairs dataset.
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